CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination.

نویسندگان

  • Jigisha R Patel
  • Erin E McCandless
  • Denise Dorsey
  • Robyn S Klein
چکیده

Multiple sclerosis is a neurodegenerative disease characterized by episodes of autoimmune attack of oligodendrocytes leading to demyelination and progressive functional deficits. Because many patients exhibit functional recovery in between demyelinating episodes, understanding mechanisms responsible for repair of damaged myelin is critical for developing therapies that promote remyelination and prevent disease progression. The chemokine CXCL12 is a developmental molecule known to orchestrate the migration, proliferation, and differentiation of neuronal precursor cells within the developing CNS. Although studies suggest a role for CXCL12 in oligodendroglia ontogeny in vitro, no studies have investigated the role of CXCL12 in remyelination in vivo in the adult CNS. Using an experimental murine model of demyelination mediated by the copper chelator cuprizone, we evaluated the expression of CXCL12 and its receptor, CXCR4, within the demyelinating and remyelinating corpus callosum (CC). CXCL12 was significantly up-regulated within activated astrocytes and microglia in the CC during demyelination, as were numbers of CXCR4+NG2+ oligodendrocyte precursor cells (OPCs). Loss of CXCR4 signaling via either pharmacological blockade or in vivo RNA silencing led to decreased OPCs maturation and failure to remyelinate. These data indicate that CXCR4 activation, by promoting the differentiation of OPCs into oligodendrocytes, is critical for remyelination of the injured adult CNS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium

The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...

متن کامل

Trichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium

The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...

متن کامل

Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system

Current treatment modalities for the neurodegenerative disease multiple sclerosis (MS) use disease-modifying immunosuppressive compounds but do not promote repair. Although several potential targets that may induce myelin production have been identified, there has yet to be an approved therapy that promotes remyelination in the damaged central nervous system (CNS). Remyelination of damaged axon...

متن کامل

Transcription factor 7 like 2 promotes oligodendrocyte differentiation and remyelination

Transcription factor 7 like 2 (TCF7L2, also termed TCF4), is a Wnt effector induced transiently in the oligodendroglial lineage. The current well accepted hypothesis is that TCF7L2 inhibits oligodendrocyte differentiation and remyelination through canonical Wnt/β‑catenin signaling. However, recent studies indicated that TCF7L2 activity is required during oligodendrocyte differentiation and remy...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 24  شماره 

صفحات  -

تاریخ انتشار 2010